
The University of Sydney

Unit for History and Philosophy of Science

S
ID

ERE·ME
N

S·EADE

M
·MUTAT

O

The Controversy over Trusted

Computing

Catherine Flick

Submitted in partial fulfilment of the requirements of the degree of
Bachelor of Science Honours (History and Philosophy of Science),

University of Sydney

June 2004

“But first, to reconcile the blue-ey’d maid
For her stol’n statue and her tow’r betray’d,
Warn’d by the seer, to her offended name

We rais’d and dedicate this wondrous frame,
So lofty, lest thro’ your forbidden gates
It pass, and intercept our better fates:

For, once admitted there, our hopes are lost;
And Troy may then a new Palladium boast;

For so religion and the gods ordain,
That, if you violate with hands profane

Minerva’s gift, your town in flames shall burn,
(Which omen, O ye gods, on Graecia turn!)
But if it climb, with your assisting hands,
The Trojan walls, and in the city stands;

Then Troy shall Argos and Mycenae burn,
And the reverse of fate on us return.”

Virgil, Aeneid II, 19 B.C.E, trans. Dryden

Contents

List of Figures iii

Introduction 1

1 Trusted Computing 5
1.1 The Current State of Security . 5
1.2 Background Material . 6

1.2.1 Public Key Cryptography 6
1.2.2 Trust . 8
1.2.3 Ownership . 9

1.3 The Trusted Computing Platform Specification 9
1.3.1 Hardware Requirements 10
1.3.2 Secure Boot . 11
1.3.3 Use of Encryption . 13

1.4 The Software Specification: Next-Generation Secure Computing
Base . 13

2 Implementation and Uptake 15
2.1 The Problems with Public Key Infrastructure 15

2.1.1 Problems with PKI in a Trusted Computing Setting . . . 16
2.2 The Vulnerabilities . 17
2.3 Ubiquity . 19

2.3.1 Benefits to Businesses . 19
2.3.2 Microsoft’s NGSCB Balancing Act 20
2.3.3 The Lowest Common Denominator 21

2.4 The Law of Unintended Consequences 22
2.4.1 Anti-Digital Rights Management 22
2.4.2 Anti-Social and Illegal Uses 24

3 Implications of Trusted Computing 25
3.1 Proponents and Critics . 25
3.2 Language . 26

3.2.1 “Trust”, “Control”, and the “Opt-In” Mechanism 27
3.2.2 “Ownership” . 28

i

3.2.3 Name Changes and “Archiving” 29
3.2.4 “Neutrality” . 29

3.3 Digital Rights Management . 30
3.4 Software Lock-In and Competition Restriction 31
3.5 Making Trusted Computing More Palatable 32

Conclusion 35

Glossary 37

Bibliography 41

ii

List of Figures

1.1 A Trusted Computing Platform Module hardware chip 11
1.2 Motherboard components of a Trusted Computing Platform . . . 12

iii

Introduction

Modern computing is a dangerous business. Viruses, trojan horses and poorly-
written software all conspire to make even simple tasks, such as reading email,
risky. While some analysts believe that the correct answer to these security
problems is to develop new and more security-aware applications, others have
argued that these problems are endemic and cannot be fixed by anything short
of a new security infrastructure. This new platform, called Trusted Computing,
was recently proposed by a consortium of major tech companies. Proponents
claim that it will make networked computing safe again. This thesis shows
that even if it is implementable, it would only succeed at the expense of the
consumer’s privacy and freedom of choice.

The controversial nature of Trusted Computing became obvious to everyone,
when, in May of 2004, in the middle of Microsoft’s Windows Hardware Engineer-
ing Conference (WinHEC), the online technology newspaper CRN published a
report that Microsoft was shelving its Trusted Computing Platform-based Next-
Generation Secure Computing Base (NGSCB) security system. It quoted the
product manager of Microsoft’s Security and Technology Business Unit, Mario
Juarez, as saying, “We’re evaluating how these NGSCB capabilities should be
integrated into Longhorn, but we don’t know exactly how it’ll be manifested.
A lot of decisions have yet to be made” [Rooney, 2004]. Headlines such as
“Microsoft Drops Next-Generation Security Project” quickly appeared on the
popular newspaper discussion site, Slashdot [Lord, 2004], and similar headlines
and articles replicated across many other news sites. Unfortunately, CRN had
misinterpreted (or misrepresented) Juarez: NGSCB had not been canned, but
had been slated for re-evaluation after feedback from developers and potential
customers. However, speculation and rumour flooded the major Internet news
sites until Juarez was urged at WinHEC to confirm whether the scrapping of
NGSCB was true. He denied the claim, stating “It’s absolutely not true that
it’s being killed.” [Naraine, 2004]. However, the fact that this simple misrepre-
sentation had been picked up so quickly and reproduced so infectiously across
the news sites of the Internet, often with derisive comments about the technol-
ogy, echoes the underlying discomfort felt by many Internet citizens over the
plans of NGSCB and Trusted Computing. I seek to explore the reasons behind
the controversial nature of this project, by examining the discussions between
critics and proponents of Trusted Computing, and by drawing conclusions as to
the viability of such a project in an environment where the user is accustomed

1

2

to being ultimately in control.
Proposals for solutions to the security nightmare are not new, but Trusted

Computing is unique in that it is backed by the majority of large computing
companies from both hardware and software realms. The controversy stems
from the problems with the Trusted Computing specification, in that critics
claim that the specification takes the control of the operation of the computer
away from the computer user, and that it will provide an easy way for compa-
nies to force computer users into moving away from competitive software and to
build Digital Rights Managements into the computing platform. In this thesis, I
show that these criticisms are indeed well-founded, in that there are ethical con-
siderations that must be made in evaluating the viability of Trusted Computing.
I also explore sociological issues, to do with definition and policy, and social is-
sues surrounding the “double-edged sword” nature of Trusted Computing and
its applications.

Other sociological problems I discuss are in regard to the language of Trusted
Computing. Specifications regarding computer technology open standards are
usually carefully and thoroughly written, and are often open to public perusal in
order to assess any potential problems before deployment. The Trusted Comput-
ing Group specification [Trusted Computing Group, 2003], although still under
revision and open to public viewing, is plagued by a lack of internal consistency
in its definitions, and with hardware already being manufactured that complies
with this specification, this leaves little room for the specification writers to
clear up such issues. I explore these and other problems with language that I
have encountered in investigating the proposals for this system.

Despite the issues I examine, there are good outcomes from the research and
development companies have put into Trusted Computing. The fact that these
companies have decided to act on the security problems largely ignored for years
is to be applauded, and as it stands, Trusted Computing could be used effec-
tively in small domains. However, without severe modifications to the current
proposals, Trusted Computing could eventually create more problems than it
solves. Some suggestions for improvements have been proposed by third par-
ties, but these may only serve to cripple the useful parts of Trusted Computing,
leaving us with a similar dilemma to that we currently experience.

Overall, Trusted Computing as it currently stands is not an adequate solu-
tion to the problems faced by the average consumer, in that it would not solve
these problems while maintaining the freedom of the user to control the use of
their computer.

Chapter 1 focuses on a technical introduction to Trusted Computing, by
explaining the reasoning behind the advances that led to its development, the
current security climate, public key cryptography, the underlying requirements
for and mixed definitions of trust, the hardware requirements for the Trusted
Platform Module, and Microsoft’s foray into Trusted Computing, NGSCB. This
chapter is technical by nature, but is important as a background to Trusted
Computing in order to understand the problems with it.

Chapter 2 delves into the problems associated with the Trusted Computing

3

architecture on a technical and sociological level. It introduces Public Key
Infrastructures and the inherent problems with them, the application of these
issues to Trusted Computing, as well as various ways that Trusted Computing
will still be vulnerable to attack. It also addresses the issues of the “double-
edged sword” nature of Trusted Computing, in which the tool-like qualities it
possesses leave it open to be used for purposes that the companies involved in
the pursuit of ubiquitous Trusted Computing may not necessarily wish to be
associated with.

Chapter 3 discusses the viability of Trusted Computing and the controversy
that has raged over it, the potential for abuse, ethical issues associated with ac-
cessibility and back-compatibility, social engineering problems, language usage,
and the attempts that have been made to make Trusted Computing better for
the average consumer.

An apologia on methodology

The technical exposition in Chapters 1 and 2 may seem at first to be unneces-
sarily internalist. I beg the patience of the reader. In Chapter 3 the sociological
importance of the specifications, as expressed by the Trusted Computing Group,
will begin to become apparent, and it will be clear that a broad-brush, purely
externalist description of Trusted Computing would not have been an adequate
starting-point.

I have included many common Trusted Computing and Information Tech-
nology terms in a glossary at the end of the paper. These terms are referenced
throughout the paper with a ∗. I have done this in order to maintain the flow
of the paper.

I have relied largely on Internet sources for both primary and secondary
material. This is not because of any unwillingness to read things on paper: other
research I have done has been based on more normal sources. It is because the
bulk of the points I wish to raise cannot be documented without using Internet
sources.

It is important to distinguish between different types of Internet source:

– those which have a known provenance, including intellectually respected au-
thors such as Ross Anderson (whose work on Trusted Computing will
presumably appear in peer-reviewed journals, but not in time for this the-
sis) and socially important organisations such as the Electronic Frontiers
Foundation, the Trusted Computing Group, and Microsoft, which have no
incentive to publish on paper at all;

– those which are effectively Internet-based newspapers, often reporting on
more technical information than would ordinary print newspapers, but
which should be accorded similar treatment; and

– those which merely document the (often uninformed) opinions of concerned
computer users1.

1In Internet terminology, often called the “unwashed masses”.

4

I have, I believe, restricted myself to the two former categories of source, except
where the cutting-edge nature of the subject means that this is not possible. As
long as this important distinction is maintained, browsing the Web is not a lazy
person’s alternative to archive research; it is archive research.

Chapter 1

Trusted Computing

In order to understand the intent and methodology behind the creation of
∗NGSCB and Trusted Computing, it is important to understand the histor-
ical concerns in computer security that have led first to the development of
the Trusted Computing base and then to the development of NGSCB. Un-
fortunately, space constraints prevent me from doing full justice to this his-
tory. Instead, I will briefly introduce the state that computer security is in
today, with some hints about the past and with an emphasis on the issues that
Trusted Computing (and NGSCB) aims to overcome. I will investigate public
key cryptography, the building block of Internet-based encryption techniques,
and specifically ∗RSA, a type of public key cryptography which is popular in
many different circumstances as a way to improve security for operations that
communicate over an insecure route. I will then outline the concept of trust
in information security circles, and how it differs from some commonly held
definitions and usages, and proceed to detail the hardware implementation of
the Trusted Computing Platform Module, and the extensions that NGSCB add
to it, in order to set the scene for some technical and sociological analysis of
Trusted Computing in the following chapters.

1.1 The Current State of Security

Although it has been known since the beginning of modern networked computing
history that security for computers and networks is an essential part of planning
networks [Ware, 1970], underlying implementation problems that have been ne-
glected along the way mean that today’s computer users, both casual and pro-
fessional, find themselves in a world of security disarray. ∗TCP and IP, the basic
protocols of the Internet, are inherently insecure [Bellovin, 1989, Stevens, 1994].
They allow people to eavesdrop on connections, to tamper with information
being sent, or to impersonate someone: for example, through “spoofing” at-
tacks, whereby a malicious entity will pretend to be someone else by forging
identification information, or through “replay” attacks, whereby entire transac-

5

CHAPTER 1. TRUSTED COMPUTING 6

tions are resent across the communication line by a malicious entity aiming to
glean sensitive data. Other problems that currently afflict the Internet popula-
tion are ∗viruses and ∗worms, ∗spyware, ∗adware, and other malicious software
(∗“malware”). These prey on unsuspecting computer ∗users and bugs in popular
software, and can have disastrous effects on networks. So far, technical (as op-
posed to legal) approaches have primarily targeted their symptoms. Anti-virus
and anti-malware software can help to keep unwanted software from causing
too much damage, but these are usually only useful (or even installed) after an
attack has taken place.

Software companies release ∗patches and upgrades to fix security vulnerabili-
ties, but these are often not applied by administrators of the vulnerable networks
and computers, and usually cannot be applied by force by software companies
for fear of privacy invasion, and due to technical issues which often prevent their
administration in heterogeneous networks. For example: in one recent case, a
benevolent virus writer wrote an antidote worm to combat another rapidly prop-
agating worm (“MSBlaster”). The antidote worm would scan the Internet for
vulnerable computers in the same way as MSBlaster does, infect them, remove
any traces of the MSBlaster worm, and download and install the security patch
for the vulnerability the worm had exploited. It was widely considered even
worse than the original worm because of the ∗bandwidth it used for download-
ing the security update, and because of administration issues associated with
the patching of vulnerable machines [Delio, 2003]. The closest that companies
can come to automatic installation of new security software is to notify the user
of its existence. An example is Microsoft Windows’ “Windows Update”, whose
frequent notifications often border on the “condescending” [Webb, 2001] and
are often disabled by disgruntled users.

Yet another problem with these approaches is that it is often difficult for
anti-virus and similar companies to keep up with the latest developments and
post appropriate updates. With hard-hitting viruses and worms appearing more
and more frequently, this is a definite concern to the health of the computers
on the Internet.

It is with these issues in mind that hardware and software companies have
approached the topic of an overall secure system, concentrating in most cases on
addressing issues of traditional security against insecure protocols, securing the
computer against becoming a soft target for determined hackers, and preventing
malicious software from stealing or destroying important information.

1.2 Background Material

1.2.1 Public Key Cryptography

Trusted Computing, touted as a magic bullet for the above security issues, is
built upon the well-established technique of public key cryptography.

Diffie and Hellman [Diffie and Hellman, 1976] first wrote about a system in
which there is an encryption function Ek and a decryption function Dk which

CHAPTER 1. TRUSTED COMPUTING 7

work on a plaintext P such that Dk(Ek(P)) = P , that is, running the decryption
function over the encrypted form of P results in P, the plaintext we started with.
For example, if P is “This thesis is the best thing since sliced bread.”, Ek(P)
is an unrecognisable text such as “vA56UAqkRbIP6”, and Dk(Ek(P)) is the
same as P (i.e., “This thesis is the best thing since sliced bread.”). These
computations assume that we have an easy and agreed way to convert text to
numbers and vice versa. There are several such systems in current use, including
∗ASCII and ∗Unicode.

Ek is computed from a publically published key x, which in turn is computed
from k, a private key held secret by the owner. k is required by Dk for decrypting
a message, but anyone who wishes to encrypt a message to send to the private
key owner can use the published key x to encrypt a message and then send it
to them. The clever aspect of the Diffie-Hellman scheme is that x is chosen in
such a way as to be easy to compute from k, but such that k is computationally
difficult to produce from x. How this is achieved is dependent on the choice
of one of many possible algorithms, but, for example, ∗RSA uses public keys
found by multiplying two large prime numbers. The security of RSA relies
on the fact that for a code-breaker to find the private key (the pair of large
prime numbers) corresponding to such a public key requires finding the public
key’s factors, which is currently extremely difficult without a huge amount of
computing power. It is worth noting that there is no reason to think that this
factoring process is inherently difficult, and it is possible that future advances
in pure mathematics will render RSA ineffective overnight.

RSA is one of the most famous and popular systems of public key cryptog-
raphy [Rivest et al., 1977], and, as we will see, it is central to all current plans
for Trusted Computing. To use the algorithm, keys are developed using two
large prime numbers, p and q (256-bit and 258-bits respectively), and numbers
d and e are sought with the property that (de− 1) is divisible by (p− 1)(q− 1).
The encryption function Ek(P) is Ek(P) ≡ C = P e mod pq, and the decryp-
tion function is Dk(C) (where C is the encrypted plaintext that is the result
of Ek(P)) — “vA56UAqkRbIP6” in the example above — is calculated by Cd

mod pq. The mechanism works because Ek is easily calculated from (pq, e), but
Dk is (currently) computationally difficult to compute from the pair (pq, e). So
it follows that the key (pq, e) can be relatively safely published.

RSA is commonly used for the encryption of secure Web sessions, so that
sensitive information such as credit card details, bank account details and so on
can be sent over the Internet without fear of someone prying. It is also used
in secure server sessions via protocols such as SSH (Secure SHell), a remote
access tool (a replacement for ∗telnet) on most Unix-like systems. SSH uses
the RSA algorithm to encrypt connection information so that passwords and
other sensitive material are not sent over the Internet in plain text; instead,
only their cyphered form is sent. SSH and its relatives SCP, SFTP (both file
transfer protocols), SIMAP and SPOP (both email transfer protocols) provide
secure alternatives to the more traditional forms of these protocols, which send
unencrypted passwords to authenticate.

Even though it is currently computationally difficult to break an RSA key, ef-

CHAPTER 1. TRUSTED COMPUTING 8

forts based on distributing the workload of such an operation across a large num-
ber of computers have successfully managed a brute-force decryption [Patrizio, 2002].
As the key lengths increase, however, it takes increasingly more powerful efforts
to break them in a reasonable timespan. Even so, RSA is not completely secure,
not only because of the pure mathematical possibilities mentioned above but
also because eventually there will probably be computing power that will be
able to break the keys quickly. Therefore, those wishing to keep information
encrypted for long periods of time should be aware of the fact that their data
may well be vulnerable in the future.

1.2.2 Trust

In the computer and network security field the word “trust” and its cognates
take on a more well-defined meaning than the everyday use of the term; and yet
“trust” is still ambiguous. To disambiguate it, it is useful to define two words,
“trusted” and “trustworthy” [Anderson, 2002]. Both are defined with respect
to some particular security policy, thus:

• A “trusted” system is one which, if compromised, will breach the security
policy.

• A “trustworthy” system is one which will not be compromised (i.e. is com-
pletely secure).

A computer that has access to sensitive information but is not secure can be
described as “trusted but not trustworthy”, and a computer that is completely
secure (for example, not connected to a network, and locked in an underground
bunker with the key thrown away), but which does not have any sensitive mate-
rial on it, can be considered “trustworthy but not trusted”. The ideal is to have
a “trusted and trustworthy” system: a system that can store sensitive data that
is totally secure [Anderson, 2002].

It is these differences between terms that caused Microsoft to change the
name of its venture, of which ∗NGSCB is a component, from “Trusted Com-
puting” to “Trustworthy Computing”, although the Trusted Computing Group
retains the former, as will I [Coursey, 2002, Anderson, 2002]. Richard Stall-
man, head of the Free Software Foundation, suggests that it should be renamed
“Treacherous Computing”, “because the plan is designed to make sure your
computer will systematically disobey you” [Stallman, 2002].

The main aim of Trusted Computing is to produce a system that can be
relied on to keep the information on the computer and in transit as safe as
possible from unwanted outside interaction or monitoring. As we will see, what
counts as “unwanted” is rather contentious; this will be addressed later. The
type of cryptography used in Trusted Computing, with a unique encryption key
pair for each computer, ensures that compromising the keys of one computer will
not mean that other computers with Trusted Computing hardware and services
are immediately able to be compromised.

CHAPTER 1. TRUSTED COMPUTING 9

However, as with almost any security system, the ∗users are a weak point
which can be exploited through social engineering1, a weakness that is difficult to
protect against because of the requirement of users to be able to carry out their
everyday tasks. The functions in Trusted Computing restrict the consequences
of users being tricked into running a malicious application, etc., which would
drastically reduce the problems currently experienced by such users. However,
for advanced users, these mechanisms will restrict their ability to use the com-
puter to its fullest potential. It is the lack of this distinction between types of
users in Trusted Computing which leads to Stallman’s accusation of disobedi-
ence, that the Trusted Computing mechanisms effectively take away any trust
in the ability of the user to be able to make decisions about the running of their
computer.

1.2.3 Ownership

The “owner” of a Trusted Computing platform is another ambiguous term in
the ∗Trusted Computing Group specification. It is defined, in different places
in the specification, as:

a) Any entity that knows a particular shared secret that is stored in a shielded
location on the ∗TPM, and that may be required to prove their ownership status
by producing the knowledge of this shared secret, or, if human, through asserting
their physical presence to the machine, by pressing a button or otherwise.

b) The entity or person that controls the TPM, that is, the person (or human
organisation) who bought and legally owns the computer. This person or their
representative should be able to be verified through physical presence.

It is important to note that in some places, “physical presence” means a
human being actually at the computer, while in other places it is noted that
“the manufacturer of a platform determines the exact definition of physical
access” [Trusted Computing Group, 2003]. The meaning of this ambiguity and
the issues surrounding ownership of the Trusted Computing platform will be
discussed in Chapter 3.

1.3 The Trusted Computing Platform Specifica-

tion

The Trusted Computing specification is a set of rules for hardware that supplies
various functions to an operating system component that works alongside it
(such as ∗NGSCB). It aims to overcome the limitations of software security and
dramatically change how computer and network security is approached.

1Although “social engineering” may seem like an exaggeration, it is a commonly used term
in the information security community for this sort of manipulation. I take it to mean a “term
[. . .] for cracking techniques that rely on weaknesses in [humans] rather than software; the
aim is to trick people into revealing passwords or other information that compromises a target
system’s security.”[Raymond, 1996]

CHAPTER 1. TRUSTED COMPUTING 10

The Trusted Computing specification calls for a chip, the Trusted Platform
Module (∗TPM), to be soldered in place next to the Central Processing Unit
(∗CPU) of each computer. When the computer is switched on, if the TPM
is enabled, it will take measurements of the state of the ∗boot sequence, and
record them. The ∗operating system that has booted is considered trusted
if its boot sequence measurements are recognised as being safe. In this way,
if, for example, a ∗virus infiltrates the system and attempts to start itself on
boot, the measurements will be different and the operating system will alert the
∗user that it is running in an untrusted mode. When the operating system is
running in trusted mode, it has access to operations that allow the user to create,
encrypt, and then store files in a secure location on the hard drive, run secure
programs that require the security status of the operating system to be known,
and interface over a local network or the Internet to other computers that can
be assured of its security status through a process of ∗“remote attestation”.
This status identification can then allow secure transmission of data to occur,
with the remote computer knowing the security state of the computer to which
it is sending data.

The following section details the ∗TPM as specified by the ∗Trusted Com-
puting Group’s specification, an ∗open standard specification that can be used
by any manufacturers wishing to produce chips compliant with it, and by oper-
ating system engineers wishing to incorporate the functions the TPM provides
into their operating systems. One such operating system proposed is Microsoft’s
Longhorn, with its ∗NGSCB components. Although the TPM provides many of
the functions that NGSCB uses within its mechanisms, it is important to note
the distinction between the two, namely, NGSCB is the software used to inter-
face with the TPM, and the TPM is hardware. Other operating systems have
TPM interaction functionality in progress, such as the open source operating
system Linux.

1.3.1 Hardware Requirements

The Trusted Computing Group’s specification [Trusted Computing Group, 2003]
describes the requirements for such a TPM so that manufacturers can adhere
to them when building compatible chips (See figure 1.1).

A communications bus allows for message transfer between the computer
and the TPM. A separate component manages the information that is sent and
received, and passes on the information to the appropriate areas of the TPM. It
also manages authorisation and access policies. The cryptographic co-processor
interfaces with hardware cryptographic engines for ∗RSA, ∗HMAC, ∗SHA-1,
and the Random Number Generator (RNG). It also deals with encryption and
decryption, key generation, and ∗hashing (using SHA-1), and implements a
∗Vernam one-time pad for authentication and transport sessions (see figure 1.2).
For key generation it hooks into the appropriate component, which creates RSA
keys, stores the private part in a protected area of the TPM, and returns the
public key to be used.

There is an “opt-in” component within the system. This component fea-

CHAPTER 1. TRUSTED COMPUTING 11

Figure 1.1: A Trusted Computing Platform Module hardware chip

tures mechanisms that allow the TPM to be turned on or off, enabling the
user to choose whether or not the TPM is to be used within their computing
environment. The task of setting the status of the TPM must be authorised
by the owner of the computer. (See above for how the term “owner” is am-
biguous.) This can be done remotely with authorisation from the owner, but
it is recommended that the owner be required to attend the machine in per-
son (be physically present), and provide some sort of physical verification of
authorisation.

1.3.2 Secure Boot

The ∗operating system must be ∗booted into a secure mode before making use
of the ∗TPM functionality. In order to verify that no malicious additions to
the hardware or software have been made, ∗SHA-1 hashes of measurements of
configuration information are made during the boot sequence.

Each of the TPM’s Platform Control Registers (∗PCRs) is a 160-bit storage
location for configuration information. The measurements made during the
secure boot process are stored here. In order to keep the amount of information
stored fairly small, a cryptographic ∗hashing algorithm renders a fixed-length
value from the arbitrary length measurement information. Each measurement
made is a hash of all the previous measurement results and the order in which
these were made. In this way, the same length piece of data is always returned,
although in a guaranteed greatly altered state (guaranteed in a probabilistic
sense — there is always a chance that this condition might not be met, but the
chance is negligibly small).

CHAPTER 1. TRUSTED COMPUTING 12

Cards, Ports,

Other Peripherals

Central

Processing

Unit

RAM

South Bridge

North BridgeGraphics Card

Trusted Platform Module

- Input/Output management

- Cryptographic Co-Processor

- Key Generator

- HMAC Engine

- SHA-1 Engine

- Random Number Generator

- Opt-in Component

Figure 1.2: Motherboard components of a Trusted Computing Platform

This TPM-enabled boot process requires an addition to the computer’s Ba-
sic Input/Output System (∗BIOS), a set of instructions that runs when the
computer is powered on and which loads the operating system. This addition,
the Core Root of Trust for Measuring Integrity Metrics (∗CRTM), is considered
an initial basis for the trust in the booting system. It initially checks its own
integrity, and that of the BIOS, stores this information in a PCR hash, and
then passes control of the boot procedure to the BIOS. The BIOS completes its
part of the boot process, takes a measurement of the state of the system, stores
that in a PCR, and then passes control to the operating system loader, which
makes more measurements during its boot procedure, of the operating system
components and initial processes. As the operating system loads applications
after booting (automatically or as required by the user), more measurements
are made that store information about the state of the computer whilst running
these applications in a PCR. As in the boot procedure, each of the application
measurement results is a hash of all previous measurement results and the order
in which these were made. The end result can be used for responding to remote
attestation requests, or as an integrity signature when saving data (∗“sealing”)
to a secure location to inform as to the security state of the computer at the time

CHAPTER 1. TRUSTED COMPUTING 13

the data was signed and sealed. If the data needs to be recovered (∗“unsealed”),
a request is made of the measurement hash to make sure that the state of the
computer matches the security state when the data was initially sealed.

1.3.3 Use of Encryption

Users of Trusted Computers have two different types of public/private key pairs
available to them. The first, the Endorsement Key (∗EK), is a 2048-bit ∗RSA
key pair of which the private portion (∗PRIVEK) is stored in a shielded loca-
tion inside the TPM, and the public portion (∗PUBEK) is available to the user
and applications on the trusted computer. This key pair is most likely to be
generated by the manufacturer of the platform before it is sent out from the
factory. Endorsement Keys can only be replaced following a stringent set of au-
thentication and physical presence checks, that is, identification of “ownership”
of the computer. Because there is only one Endorsement Key for, effectively,
the lifetime of the computer, and because it is likely to be associated with other
information about the owner of the computer, the disclosure of PUBEK could
be considered to be disclosure of personally identifying information. For this
reason, it is recommended that Trusted Computer ∗users use a second type of
key pair, Attestation Identity Keys (∗AIKs), as much as possible. These AIKs
are also 2048-bit RSA keys which can be used by the user to certify (sign) dif-
ferent pieces of information about the system that remote entities may request.
Since there can be many AIKs (as opposed to only one Endorsement Key), it is
easier to keep each AIK separate from personally identifying information. Infor-
mation that could be certified by AIKs includes information about the security
state of the computer, other key information, information about the computer
hardware, and so on.

For dealing with secure ∗sealed storage, yet another key pair is created for
encrypting data that is written to storage devices. This is the Storage Root Key
(∗SRK), a unique key created for each owner. It is used for encryption of objects
(be they files or other arbitrary pieces of data) for storage to devices such as
hard drives, CDROMs, etc. Objects that are required to be used by more than
one owner must be migrated accordingly, by unencrypting and reencrypting the
information with the new owner’s key, as objects owned by a previous owner
cannot be automatically inherited by a new owner. There are currently no pro-
visions for dealing with situations where the ∗TPM or motherboard break down
and data must be reclaimed from the storage device — a very major oversight,
since hardware failures often occur, and the data that would be securely stored
on the device is most likely the most important data, thus vital to be recovered.

1.4 The Software Specification: Next-Generation

Secure Computing Base

Microsoft’s Next-Generation Secure Computing Base (NGSCB) is, as of writing,
a combination of the hardware Trusted Computing system as defined by the

CHAPTER 1. TRUSTED COMPUTING 14

Trusted Computing Group, with a software addition, the ∗Nexus, a manager
for software wishing to interact with the hardware functionality provided by
the TPM. The Nexus provides device driver services for input/output, a file
system, memory management, window management, and user debugging. The
other main features it advertises are:

Strong Process Isolation: The operating system sets aside a secure chunk of
memory which it uses to process internal process data with certain secu-
rity requirements. The benefit of this is that if the operating system is
compromised, the process table and memory can remain private and retain
integrity. This is useful in protecting against viruses and some common
compromise targets.

Sealed Storage: These mechanisms are related to the ability of the TPM to
∗seal and ∗unseal confidential data. Each program can store data in a
secure storage area that requires authentication before it is accessible,
so that the information is only accessible to the exact combination of
machine, Nexus, and program that initially stored it.

Attestation: This is the process by which a program can digitally sign and
acknowledge that a piece of data was created within a secure operating
environment in which the software running is known and can be identi-
fied. Remote applications can use this data to identify whether the local
application has integrity. This will be used to authorise carrying out of
secure transfers of data across insecure protocols (such as ∗TCP/IP).

Secure Paths to the User: Within this framework, hardware devices (such as
keyboards or mice) can be used as a secure communications route between
the user and a trusted application. Keyboard input will be protected from
physical attacks, and graphics card drivers will be modified so that screen
shots and scrapes cannot be taken of certain areas of the screen (at least,
not via the operating system — but see chapter 2), and so that physical
attacks (such as ∗van Eck phreaking) cannot be used against the computer.

These features are presented in an accessible Application Program Interface
(∗API), which allows developers to write applications that use them. Microsoft
has released early versions of this API to developers [Krill, 2003] so that when
NGSCB is ready for release, there will be applications available that will make
use of its functionality. However, the feedback on early releases of this API have
made Microsoft reassess the functionality of NGSCB, an issue that is discussed
further in the next chapter.

Chapter 2

Implementation and Uptake

2.1 The Problems with Public Key Infrastruc-

ture

One of the major outcomes of the Trusted Computing initiative is likely to be
the advent of large-scale Public Key Infrastructures (PKI). PKI revolves around
a central authoritative server, known as a “Certificate Authority” (CA), which
issues electronic certificates that certify that a particular computer has a par-
ticular public key pair that identifies it. Any other computer that wishes to
then communicate with this computer — and not with another computer mas-
querading as it — can check the authenticity of the keys sent from the computer
it wishes to communicate with against the keys held by the CA (and, therefore,
that it can be trusted), and then carry out communication with the knowledge
that the computer is what it says it is [Ferguson and Schneier, 2003]. That this
process becomes common is strongly implied by the Trusted Computing spec-
ification. Without the widespread use of PKI, large-scale remote ∗attestation
will not be possible, and as we have seen remote attestation is a sine qua non
of some aspects of Trusted Computing.

It remains unclear exactly how this infrastructure will work (if indeed it
will), as privacy concerns have meant that the ability to create anonymous keys
purely for communicating with remote servers has been added to the ∗TCG
specification. These anonymous keys (the ∗Attestation Identity Keys) will be
used for the encryption of information about the state of the computer and
other non-personally identifying information, that may be requested through
the direct anonymous attestation capabilities of Trusted Computing. The AIKs
are certified by the ∗EK, but in order for them to remain anonymous, they must
not be identifiable as associating with the Endorsement Key; that is, they must
not contain information about the EK, as the EK is the unique, identifying key
for that computer. If such information about the EK were to be released, it
could be used to track the individual EK and thus the individual computer,
invalidating anonymity. Thus the AIKs are merely a way of certifying that the

15

CHAPTER 2. IMPLEMENTATION AND UPTAKE 16

remote attesting computer that the computer is trusted, and can be used to
sign information as belonging to that AIK identity, such as for communication.

2.1.1 Problems with PKI in a Trusted Computing Setting

Although Trusted Computing supports and requires PKI, there are many issues
that must be dealt before large-scale PKI is feasible. These problems are general
issues of PKI, but are particularly problematic in a Trusted Computing context,
because of its low-level (hardware) nature and the longevity of its keys.

Expiration and Revocation

With any cryptographic effort, there is always the threat that an encryption key
could be compromised. This is why many certificates and keys are distributed
with an expiry date: it is easier to recover from a compromise if the keys are
continually being re-generated. The idea is that those who can get hold of a
certain key legitimately will be able to keep up-to-date with changes to the
key more easily than those who can get hold of the key illegitimately (e.g., by
wire-tapping).

If a compromise occurs, it is important for the owner of the key to be able
to revoke any certificates associated with it. Difficulties that can encumber this
process include:

– letting parties know that a certificate has been revoked;

– updating data that has been encrypted with the keys associated with the
certificate;

– the fact that the keys are effectively locked away on the TPM and are un-
readable by the user, meaning that manual revocation (i.e. without going
through an application that could potentially rely on the compromised
key) would be difficult for the average user; and

– the issue that generating new ∗Endorsement Keys (and getting them properly
certified) is a particularly difficult task for non-manufacturers to under-
take.

Setting up a central certificate revocation list is not an acceptable way of
dealing with the problem, as it would require that all computers be online every
time they need to use a key, in order to check back against the central server.
Many computers are not online all the time (especially with laptops becoming
more common), and so cannot easily keep track of the status of the remote
certificates they use.

These issues are compounded by the fact that with the probable advent of
anonymous key circulation for direct anonymous ∗attestation, it will be difficult
to work out which keys need to be revoked without a significant privacy invasion.

CHAPTER 2. IMPLEMENTATION AND UPTAKE 17

Certificate Authority Compromise

The Certificate Authority that initially endorses the certificate for the main
∗TPM ∗Endorsement Key at the time of manufacture holds a lot of power, and
is thus a potential target for those who wish to subvert the system. If this
CA’s private key is compromised, then authentic-looking TPM EK certificates
could be forged. Coupled with the lack of a reasonable expiry or revocation
infrastructure (as discussed above), this could be potentially disastrous for the
Trusted Computing initiative. Even with multiple certificate authorities, the
problem stands, as many computer owners will not understand the depth of the
issues that will be at hand if they do not update their keys; not to mention the
fact that updating keys and migrating data would be an immense task.

Microsoft, while agreeing that attacks on the keys stored within the TPM
are possible, has claimed that “[an attack] would be an extreme case and even
then would only affect the single machine (i.e., it would not be a break once,
break everywhere, or “BOBE” attack)” [Microsoft, 2003a]

However, it would only require a single, targeted attack on the CA to signif-
icantly disrupt a worldwide system of remote attestation or Endorsement Key
use. A targeted attack of the type that would be needed has already been known
to work: distributed computing efforts have been successful at breaking ∗RSA
encryption through brute-force techniques (such as with the RSA-576 key, bro-
ken in December 2003 [Laboratories, 2003] — even though this is a much smaller
key than those proposed, it is theoretically and likely possible for these keys to
eventually be broken similarly), and other, more traditional attempts at theft
of a key are also possible, such as physically stealing the computer upon which
the key resides, in order to perform physical attacks against the chip or execute
physical presence authentication in order to access the computer’s capabailities.

2.2 The Vulnerabilities

Although the Trusted Computing system renders its computing platform less
vulnerable to some security flaws, it enhances other potential security vulnera-
bilities. One of these is an increased vulnerability to ∗Denial of Service attacks.
Denial of Service (DoS) attacks involve an attacker using up the resources of a
victim to effectively disable it. This can be accomplished through starving the
victim’s network of usable ∗bandwidth, filling up hard disk space, ∗file handle
and ∗process table exhaustion, or any other method in which limited resources
can be exhausted [Schuba, 2000]. These attacks can come from several comput-
ers at once, in a malicious orchestrated campaign. The attacking computers are
often ones that have been hacked into or made vulnerable by viruses, worms, or
mis-management (through not updating software, or misconfiguring software),
because using such computers makes it easy to obscure the origin of the perpe-
trator.

DoS attacks can clearly be aimed at Trusted Computing remote attestation
services — either at an attesting computer, or at companies that require remote

CHAPTER 2. IMPLEMENTATION AND UPTAKE 18

attestation. By flooding the bandwidth required for remote attestation, the
attestation service can be stifled.

But ∗DoS attacks are not only used against remote computers. They can
also be used against applications or hardware within one computer. The prob-
lem of protecting against this popular attack is where Trusted Computing is
most vulnerable. The ∗TPM itself is open to attacks against crucial functions
which require authorisation. Because the TPM does not keep track of previ-
ous authorisation requests [Trusted Computing Group, 2003], failed attempts
at authorisation are not noted against other failed attempts; that is, the cur-
rent authentication attempt is not corresponded back to any others. However,
because this leaves the TPM open to brute-force dictionary attacks (that is,
trying every possible combination of characters in order to eventually guess the
password, which can also potentially be used to flood the ∗bandwidth to the
TPM in a DoS as well), countermeasures against this sort of attack must be im-
plemented. Such countermeasures can lead to the opening of the TPM to DoS
attacks, crippling the TPM for other authentication requirements at the time
of attack. For this reason, the TCG specification recommends implementing
software-based services outside the TPM to monitor attempts at authentica-
tion, and to balance the response to such problems; but the software services
that the specification calls for will themselves be open to DoS attacks. The
Trusted Computing Group specification is not fixing the problem, merely fail-
ing to take responsibility for it, and will rely on software implementations to
adequately protect it against DoS attacks.

Other vulnerabilities in Trusted Computing could well be discovered if the
hardware could be simulated or monitored physically. IBM states it is not
attempting to secure the TPM against its user, and so its chip is able to be
monitored and is susceptible to power, radio, or timing analysis. “We simply
are not concerned with threats based on the user attacking the chip,” they
claim [Safford, 2002b]. Microsoft, however, is a little more cautious with its ap-
proach, aiming at offering users a “secure pathway from the keyboard through
the computer to the monitor screen, preventing it from being secretly inter-
cepted or spied on” [Microsoft, 2003b], and considers the possibility of someone
attacking the hardware as being “technically feasible” but an “extreme case”
[Microsoft, 2003a], which implies that they are most certainly concerned with
attacks against the chip. Whether or not Microsoft will be using IBM’s chip is
as yet unknown. If they do, there will be either an interesting conflict or some
eating of words.

It is important to note that other security systems are also vulnerable to DoS
attacks similar to those described above. Whether there is a security system as
broadly useful as Trusted Computing which is less vulnerable to DoS attacks is
a difficult question which I cannot answer (and which is perhaps too vague to
answer). Whether or not it is better to have smaller, more targeted security
systems that could fail under a DoS but not incapacitate the greater platform
is also a subject that would require further research. However, it is safe to say
that these vulnerabilities preclude Trusted Computing from claiming its magic
bullet status, and that shuffling hardware problems off into software domains

CHAPTER 2. IMPLEMENTATION AND UPTAKE 19

will only abstract the security of Trusted Computing and make it harder to keep
implementations standardised.

2.3 Ubiquity

One of the requirements for Trusted Computing to work effectively is the wide-
scale uptake of the technology. In the jargon, it must be “ubiquitous”, at least in
some domain of computing (such as the banking domain) and preferably (from
Microsoft’s point of view) in all or almost all domains. Without ubiquity (at
least in some domain), Trusted Computing will not have enough interoperability
to be useful: in other words, without ubiquity services will fail because some
component doesn’t understand another (Trusted) component’s messages. For
example, remote attestation is useless unless many computers all trust the same
attestation server.

Many other technologies have become ubiquitous in this sense, from 8-bit
bytes to ∗ASCII to VISA card numbers to ∗TCP/IP. Assumptions of ubiquity
must feature in early promotional material (such as [Hewlett-Packard, 2003]) so
that computer hardware and software vendors become likely to establish pro-
visions for the development of hardware, software, and policy support for the
initiative, which would then inspire consumers to purchase the equipment and
software. Microsoft has discovered the difficulties of needing feedback from po-
tential clients on pre-release technology, and has also discovered the conflicting
requirement for final software ∗APIs be available to developers early on in the
release cycle in order for them to begin programming.

So far, the clients Microsoft has approached to test the technology are pre-
cisely the initial target audience Microsoft has in mind: medium-to-large busi-
nesses. In this section, I look at this target audience for ubiquitous Trusted
Computing, and the difficulties associated with breaking the seeming “Catch
22” ubiquity situation in this case. I also address some issues with dealing with
the everyday user, that is, the average consumer, for when Trusted Computing
spreads outside the realm of specialised use.

But first I will say something positive about Trusted Computing.

2.3.1 Benefits to Businesses

One area in which Trusted Computing will provide much-needed services is for
the networking needs of medium-to-large businesses. The secure authentica-
tion mechanisms offered by Trusted Computing greatly enhance current mea-
sures which are easily breakable through technical or ∗social engineering attacks.
Businesses could use Trusted Computing authentication mechanisms to provide
employees with secure connections to work from home, in the knowledge that the
employee’s computer will not have viruses or malware which could compromise
the security of the connection or infect machines within the firewalled business
network with viruses or worms [Anonymous, 2004]. ∗Digital Rights Manage-
ment could be used to restrict confidential files so that the intended recipient

CHAPTER 2. IMPLEMENTATION AND UPTAKE 20

is the only entity able to view them. Financial transactions could be made
more secure than they are currently, with financial servers able to use remote
attestation to verify the identity of the computer user, thus helping to prevent
success at “phishing” (a social engineering attack in which scammers pretend
to be an official financial or other server and lure gullible account-holders into
entering sensitive information about their accounts) and other online fraud.
Another benefit of Trusted Computing is preventing employees from acciden-
tally installing ∗malware and ∗viruses or reducing the impact of an employee
accidentally giving out sensitive information such as passwords.

These benefits are important to note, as they could well be the basis for
establishment of ubiquity for Trusted Computing. If Trusted Computing is
successful in this arena, then it is likely that the companies selling it will shift
their aim to home users, or that the rise of the platform in businesses will mean
that some start to bring it home with them, thus introducing the technology to
a different domain.

2.3.2 Microsoft’s NGSCB Balancing Act

According to a press reports, NGSCB was canned during the 2004 ∗WinHEC
conference. These reports were followed by Microsoft’s hasty reassurance that
it was “alive and kicking” after all [Naraine, 2004]. The fact that this press
exchange caused such a stir in the Internet community1 is highly reflective of the
controversial nature of the project. With the next version of Microsoft’s flagship
operating system, Windows “Longhorn”, in developer preview and with not-
too-distant-future release dates tentatively declared, Microsoft had been eager
to bring developers on board to write applications which take advantage of the
security features of NGSCB, and had been actively pursuing clients that would
want to incorporate it into their planning. However, in a somewhat short-sighted
move, Microsoft ignored the potential, and now obvious, problem that most
business clients would not want to rewrite the software they had been using for
years (and probably commissioned for a lot of money) merely in order to use the
security benefits of NGSCB. For example, Mario Juarez, the product manager
of Microsoft’s Security and Technology Business Unit, noted in an interview, “A
major bank in the U.K. is interested in NGSCB but they have concerns about
changes that they would have to make to their applications. Then there’s a big
manufacturing company in the U.S. that likes the idea of strongly authenticating
remote employees and partners. But they want it available out of the box and
not [to] require changes to applications [(programs)].” [Naraine, 2004]

That Microsoft completely missed such a serious problem in their high-profile
move towards a secure operating system shows a lack in understanding (on the
part of their strategic planners) of how interested parties and developers would
be using the system. The fact that they had been releasing details about the
∗APIs to developers shows that they understood the need for a platform to have
usable applications developed for it, so that customers will buy it. Of course

1Not to mention nearly giving the author of this thesis a heart attack!

CHAPTER 2. IMPLEMENTATION AND UPTAKE 21

Microsoft develops some applications for its own platforms; but it is generally
thought, not least by Microsoft planners, that a single team of developers is
not enough to anticipate the market’s needs for a wide variety of applications.
However, they misjudged the requirements customers have for such a platform,
and to have moved too soon to make the APIs available to developers, many of
whom have begun programming to these requirements, shows a lack of foresight
in both requirements and time management. This misjudgement makes one
wonder whether the hype both for and against Trusted Computing and NGSCB
is at all justified; the decision to re-evaluate the system now will push the
release date for it back by quite a while, if indeed NGSCB will be released in
this form at all. The re-evaluation will most likely dramatically change the
way that the system works, at least for existing applications, as reforming it to
allow for applications to use it without need for rewriting them is a huge task.
It is extremely difficult, perhaps impossible, to create APIs for NGSCB that
do not require significant program adjustment without inheriting the security
problems that plague current programs, rendering NGSCB useless for many
security issues that it would, in its current state, fix. For example, existing
calls to writing data to a hard drive would have to be modified in order for the
applications to write data securely, which could seriously restrict applications
that currently interoperate within Windows. The whole debacle also raises the
question of whether Microsoft has adequately recognised and evaluated public
opinion on the mechanisms they will be offering with this technology. Curiously,
Microsoft has since “archived” all of the information on NGSCB previously
directly available from its website, as if to say that the re-evaluation of NGSCB
will render current information about it irrelevant [Microsoft, 2003c].

2.3.3 The Lowest Common Denominator

One of the greatest barriers to establishing the ubiquity of Trusted Computing
is the problem of varying computer skill levels among users. Designing user
interfaces for security services is a difficult task: even more so than other user
interfaces, because of the security issues at stake. Whitten and Tygar describe
a set of properties that security application user interfaces must have:
“security software is usable if [and only if] the people who are expected to use
it

1. are reliably made aware of the security tasks they need to perform;
2. are able to figure out how to successfully perform those tasks;
3. don’t make dangerous errors; and
4. are sufficiently comfortable with the interface to continue using
it.”

[Whitten and Tygar, 1998]
These guidelines are most suitable to single-task programs, and cannot easily

be applied to Trusted Computing and its software handlers, because of the wide
range of tasks that Trusted Computing is capable of. The software that must
be written to deal with these tasks will need to cater to a wide range of users,

CHAPTER 2. IMPLEMENTATION AND UPTAKE 22

from new computer users through to experts who require that there be low-level
interfaces for custom security settings. Having to dumb down security not only
makes it irritating to these expert users, but also is very difficult to encourage
users to maintain, as many users do not want to be nagged into appropriate
security behaviour by the operating system.

Thus the software developers for Trusted Computing will need to balance the
usability of their software and the requirements for security against a different
set of imperatives from Whitten and Tygar’s. They will have to make sure that
the security of the system:

– is not compromised through the user’s lack of interest or inability to under-
stand the importance of security directives;

– cannot be compromised through social engineering techniques;

– is unobtrusive and allows the user to carry out their tasks without interrup-
tion; and that it

– actually provides features needed by the users of the software (such as fine-
tuning for administrators).

Maintaining this fine balance is a difficult task, and requires not only intuitive
software but also a large amount of education for its users. Otherwise, Trusted
Computing’s ubiquity will not be established and maintained.

2.4 The Law of Unintended Consequences

The overall ability for Trusted Computing to secure communication paths, sen-
sitive data, and inter-process communication allows for many applications to
reap the benefits of this sort of security. However, the ability to protect data
and communications in this way is a double-edged sword, and could easily be
used by organisations and people undertaking undesirable activities — illegal,
“underground”, or just plain bad — to remain anonymous and protect their sen-
sitive information. Of course, exactly which activities fall into these categories
is highly contentious; but all I need show here is that there is a problem and,
since everyone agrees that some activities are undesirable, that is easily done.
I will assume, further, that allowing illegal activities is undesirable, although I
recognise that this assumption is not straightforward to interpret and may well
be false.

2.4.1 Anti-Digital Rights Management

Among the major beneficiaries of the Trusted Computing intiative are those
companies (and, on a smaller scale, individuals) wishing to seek to control the
use of data, especially media, through ∗Digital Rights Management technology.

If Trusted Computing were to become sufficiently ubiquitous, the distribu-
tion of restricted-use media could be protected by requiring clients to check with

CHAPTER 2. IMPLEMENTATION AND UPTAKE 23

a centralised server (acting as a certificate authority) to determine the access
levels for the user. This could be used to restrict people who use the media
to a particular piece of software (including, potentially, a particular operating
system). This is not a new problem, but incidents in the past where it has
been attempted have seen it fail miserably. Notable examples are the DVD CSS
(Content Scrambling System) [McCullagh, 2000] and audio encryption (includ-
ing Apple Computer’s “FairPlay” DRM for music downloaded from their iTunes
Music Store [Fisher, 2004]).

Most of these failures have been due to dedicated parties reverse-engineering
the encryption processes and finding weaknesses in them, in order to make them
work with operating systems for which they weren’t official software products.
These parties are often strongly supported by the communities surrounding
the rival software, for example, after a programmer was taken to court over
the distribution of the code for descrambling the DVD CSS, other programmers
pushed the code into the legal category of free speech by devising humorous and
artistic ways of making the code “free speech”2. The original programmer’s case
was eventually dropped, leaving its exact status in US law extremely unclear.
(It seems to me that US law embodies a self-contradiction on this issue; but I
do not have space to give full details of this view.)

Other anti-DRM efforts, including efforts against FairPlay, involve circum-
venting the DRM process by using the key that was legally provided along with
the media for the licensed player to access it, and then recording it to another,
unprotected file, or by using low-level hardware (such as a sound card driver
that captures the sound information being fed to it by the music player and then
re-records it to an unprotected file). For example, MediaMax CD3 DRM can
be circumvented by holding down the “Shift” key of the computer as it starts
up! [Halderman, 2003]

In any case, even extremely simple (if somewhat old-fashioned) approaches
can be taken to circumvent DRM. Let us consider this topic separately for the
video domain and the audio domain:

Video: Video information can be captured from any computer system ca-
pable of playing the video on its own screen, no matter what security systems
it has. Methods for doing this range from the simple (taking an external video
of the screen) to the hi-tech (hijacking the video card to divert video output to
a recorder).

Audio: Similarly, audio information can be captured from any computer
system capable of playing the audio, by holding up a microphone to the speakers
and recording the music to tape. Of course there are often quality degradations
with this approach, but the degradation from a recording made with a good
microphone positioned next to an electrostatic speaker would be inaudible, or
close enough to inaudible for most purposes.

The effective outcome of the processes mentioned above, and many more like
them, is that determined individuals will usually be able to crack or circumvent

2For a gallery of these including the code for the descrambler in t-shirt, haiku, interpretive
dance, and song form, visit http://www-2.cs.cmu.edu/˜dst/DeCSS/Gallery/

CHAPTER 2. IMPLEMENTATION AND UPTAKE 24

DRM, no matter how strong the encryption is that holds it. The number of poor
quality music and video files that are currently circulating filesharing networks
is testament to the fact that many people don’t mind some quality degradation
if the result is free. The fact that such degraded quality copies are available even
without widespread, rigid DRM constraints on this type of media furthers this
argument. These individual users could easily use Trusted Computing technol-
ogy to create anonymous file-sharing networks to circulate code or illegal copies
of media that have been freed from the DRM constraints.

2.4.2 Anti-Social and Illegal Uses

Trusted Computing offers much in its arsenal for keeping data secure from tam-
pering and unwanted viewing by third parties. As well as being attractive to
honest applications, its capabilities could be used by those wishing to keep their
information secure due to the anti-social nature of that information. Whistle-
blowing could be prevented if incriminating documents could not be passed on to
outsiders, and terrorist organisations would be more at liberty to use the Inter-
net to perform document exchanges without fear of monitoring by international
agencies.

Secure distributed efforts to crack encryption could also use the anonymous
key generation capabilities of Trusted Computing to remain anonymous. ∗Virus
and ∗malware writers could also use such networks to distribute information
regarding the creation of such software, or for people who attempt to use such
scripts to attack hosts to congregate anonymously.

In these cases, it might be reasonable to expect that international agencies
would require a “back door” to Trusted Computing mechanisms so that moni-
toring of illegal activity could, in fact, occur. Microsoft, at least, claims it “will
never voluntarily place a back door in any of its products and would fiercely
resist any attempt to require back doors in products” [Microsoft, 2003a].

Whether Microsoft will defend its claims remains yet to be seen.

In this chapter, I have shown that although there might be some benefits to
Trusted Computing for some applications (such as for deploying to businesses),
that ubiquity in this domain will inevitably lead to ubiquity in other domains,
and there are issues with dealing with everyday users that will appear as a
result of this. I have also demonstrated there are some serious problems with
the mechanisms being employed within the specification, including issues with
deployment of Trusted Computing Public Key Infrastructures, vulnerabilities,
and abstraction of security concerns from the hardware to the software imple-
mentation. I have also discussed some of the social (or anti-social) issues that
could arise from a widespread deployment of Trusted Computing.

Chapter 3

Implications of Trusted

Computing

The issues raised by Trusted Computing are both technical and social. The
issues are interesting in their own right, and so are the ways in which the pro-
ponents and critics of Trusted Computing deal with them. So too are the social
relationships between these authors. Most of the writers who see significant
problems with Trusted Computing are well-respected academics and members
of free speech organisations. Those defending Trusted Computing often work
for the companies involved or wish to remain anonymous. This makes for an
interesting sociological contrast. In the following sections I will make use of this
contrast in analysing the background to the arguments for and against Trusted
Computing, in addition to saying something about their validity. I will also
explore issues which have not been covered adequately by the discussions to
date.

3.1 Proponents and Critics

The possibilities created by Trusted Computing have aroused the admiration of
many. This is evident in the number of companies that have joined the Trusted
Computing Group. Most of the big name computing hardware and software
companies are members [Trusted Computing Group, 2004]. Most of these have
been struck in one way or another by problems relating to the insecurity of
current networks and computers, and believe that Trusted Computing can give
them an edge in the security arena. The all-encompassing approach of Trusted
Computing has proven attractive to companies wishing to improve the overall
security of their products, to the point that even those companies which disagree
with the concepts have joined, purely to keep up with their competitors in the
market.

Of course, developers from member companies are distinct proponents of
the technology, with some going out of their way to rebut arguments against it

25

CHAPTER 3. IMPLICATIONS OF TRUSTED COMPUTING 26

[Safford, 2002a] in an unofficial capacity. Other vocal advocates remain anony-
mous [Anonymous, 2004] or restrict their arguments to those of official state-
ments [Hewlett-Packard, 2003, Microsoft, 2003a]. There are obvious commercial
reasons why these companies stand to benefit from defending their products,
even if they aren’t the best solution, because of the amount of time and money
that has gone into them in research and development. Whether or not Trusted
Computing is the best solution to the problem of modern computer and network
security, there is no reason for these companies to cast any doubt on the viabil-
ity of their product, as they are not bound to deliver on any of the claims they
make of their software and hardware until it is “live”. Even with the positive
aspects of the currently slated Trusted Computing model (as discussed in Chap-
ter 2), any statements of its viability or benefits to computing society from the
companies which stand to make money from it should be assessed sceptically.

Trusted Computing has raised the ire of academics, journalists and other
writers. The issues vary from problems with implementation to civil rights is-
sues and questions about the motives of the companies involved. Some offer
solutions to the issues they investigate; others merely wish to raise awareness
and educate. Although one could argue that their arguments might be seen
as worst-case scenarios or “slippery slope” arguments, I would argue that the
evidence, such as Microsoft’s antitrust suits and ongoing anti-competitive be-
haviour, and Hewlett-Packard’s anti-consumer activity in the realm of printer
cartridges, shows that at least some of these companies have behaved similarly
in the past in all-too-similar circumstances [Anderson, 2002, Anderson, 2003,
Coursey, 2002, US Department of Justice, 2004]. Thus the arguments of the
many critics should be taken seriously by policy makers or other interested
parties wishing to understand the potential uses, abuses, and problems with
Trusted Computing.

Most issues dealt with by critics are related to civil rights. The issue of user
control is a problematic one, with many wondering whether Trusted Comput-
ing really will deliver more control to the user, as has been proclaimed by some
advocates [Microsoft, 2003a]. In fact, they wonder whether it will instead in-
crease the control the software and hardware manufacturers have over the user
[Anderson, 2002, Anderson, 2003, Stallman, 2002, Coursey, 2002], through de
facto standards set through increasing market share (as ubiquity in one domain
will eventually lead to ubiquity in other domains, because the lines between
these domains are often, in reality, blurred). This idea of the fine balance be-
tween trust and control is addressed by these critics in an indirect way, and I
explain the real problems with this balance to a greater degree in the next sec-
tion. The problems of the Trusted Computing user privacy and rights models
are also hotly debated, leading to several suggestions for improving the Trusted
Computing specifications. However, these may not necessarily improve the ex-
perience for Trusted Computing users at all, but are important ones and must
be addressed before Trusted Computing becomes widespread.

CHAPTER 3. IMPLICATIONS OF TRUSTED COMPUTING 27

3.2 Language

The language used by the companies involved in the Trusted Computing initia-
tive is oftentimes ambiguous, in sharp contrast to the language more usually used
in the specification of new computer systems or protocols [Information Sciences Institute, 1981].
Most of the time these ambiguities either serve to confuse or mislead, or are the
result of inadequate definition to begin with. I attempt here to analyse the uses
of various words throughout the Trusted Computing specification and other
publications surrounding Trusted Computing, and the implications these uses
may have.

3.2.1 “Trust”, “Control”, and the “Opt-In” Mechanism

In the Trusted Computing field, the meanings of “trust” and “control” overlap
significantly with each other. Foucault [Foucault, 1975], in his famous disser-
tation on panopticism, introduces the concept that the two are closely related,
united in the practise of discipline. He describes disciplinary power as being

“. . . exercised through its invisibility; at the same time it imposes
on those whom it subjects a principle of compulsory visibility. In
discipline it is the subjects who have to be seen. Their visibility
assures the hold of the power that is exercised over them.”

The extent of the control that the Trusted Computer holds — being able at
all times to provide a unique identity for the computer user, and responding to
remote queries about that identity to disclose the activity carried out by that
identity on that computer — significantly detracts from the advantages (to the
user) of trust that the computer is running to a known configuration. And yet
the trust could not be had without the control: they are linked in a way which
I hope has become clear in Chapters 1 and 2 (and which, incidentally, could not
have been seen without some perhaps internalist-seeming technical exposition).
Sewell [Sewell, 2002] summarises this eloquently thus:

“. . . here trust and control are not antagonists engaged in a bat-
tle for supremacy but complementary components of a disciplinary
practice.”

The parallels with Foucault’s view of discipline can be drawn further: there
are parallels between his discussion of the practice of discipline and Microsoft’s
vague around issues of how the NGSCB should be used. Microsoft claims that it
is not dictating policy, that is, what its NGSCB should be used for, but mech-
anism: the functions available for software writers in developing for NGSCB
[Microsoft, 2003a]. This lack of policy-making does not preclude a lack of power,
however, as policy can easily be introduced in a de facto form:

“It was a question not of treating the body, en masse, ‘wholesale’
as if it were an indissociable unity, but of working it ‘retail’, indi-
vidually; of exercising upon it a subtle coercion, of obtaining holds

CHAPTER 3. IMPLICATIONS OF TRUSTED COMPUTING 28

upon it at the level of the mechanism itself — movements, gestures,
attitudes, rapidity: an infinitessimal power over the active body.”
[Foucault, 1975] (See also [Grossman and Webb, 1991].)

This sequence of small movements towards a hold of power is reflected
openly in the widely publicised “opt-in” nature of Trusted Computing. Giv-
ing users an option on whether to turn on the Trusted Computing mechanisms
seems like a reasonable effort to keep it controlled by the user, but in reality,
if Trusted Computing becomes as ubiquitous as some vendors seem to think
it will [Hewlett-Packard, 2003], the very process of carrying out everyday work
will require it to be on, as access to encrypted files and authentication to servers
requiring attestation will otherwise be denied.

Not only will Trusted Computing be disciplining the user of the technology,
it will also be disciplining the computer, separating out its programs’ access to
sealed storage and memory, and only allowing programs with correct authorisa-
tion to access other programs’ information. This parallels the requirements of
the partitioning mechanisms suggested by Foucault, in which “one must elim-
inate the effects of imprecise distributions, the uncontrolled disappearance of
individuals, their diffuse circulation, their unusable and dangerous coagulation”
[Foucault, 1975]. Partitioning the computer not only allows the programs that
can be trusted to run knowing that no other program can access their data,
but also allows trouble-making programs to be isolated from causing damage to
other, “better behaved” programs. Thus the trusting of a computer’s hardware
and software by other hardware and software becomes an issue of battling con-
trol between different software authors, in such a way that two authors who do
not trust each other may write this distrust into their software, preventing them
from interacting or sharing each other’s information where otherwise they may
have. This locking down of software interoperability will affect mostly applica-
tions that attempt to mimic or work with hegemonic commercial applications
such as Microsoft Office, and is likely to enhance monopolies or oligopolies, and
stifle small-scale software developers, researchers and hobbyists. The control is
in the hands of those who can easily discipline their users and programs to take
advantage of the Trusted Computing mechanisms, and the trust gained is an
imposed trust.

3.2.2 “Ownership”

Further to these issues of control, as mentioned above, the concept of “owner-
ship” of a Trusted Computing platform within the Trusted Computing Group
specification is ambiguous if not outright confused. The lack of internally con-
sistent definitions undermines the usefulness of the concept as a whole. If
the manufacturer adheres to the part of the specification which says that “the
manufacturer of a platform determines the exact definition of physical access”
[Trusted Computing Group, 2003], it could potentially allow programs to assert
themselves as owner, taking control of “ownership” functions such as the high
level administration of the TPM keys, meaning that programs could control the

CHAPTER 3. IMPLICATIONS OF TRUSTED COMPUTING 29

TPM administration of the computer independently of the computer’s owner.
In this way, objects (programs) become agents in a much stronger and more
insidious sense than ever intended by Latour! [Latour and Woolgar, 1986] This
could impact the human owner’s ability to control their own computer and, fur-
thermore, would almost certainly place trust in the appropriate functioning of
the computer with the software writers. Administration tasks would also have
to be somewhat automated in order for them to be palatable to an everyday
user audience, which would require the definition of “ownership” to at least
allow the human owner to delegate responsibility of these tasks to a program.
If such a user could be tricked into allowing a rogue application to have these
priveleges, it could seriously undermine the security of the computer.

3.2.3 Name Changes and “Archiving”

When Microsoft’s NGSCB first made an appearance, it was named for Pal-
ladium, the statue reported to have guarded Troy. After the initial furore
over the proposed security solution established it as being overly restrictive
[Anderson, 2003, Boutin, 2002, Manjoo, 2002], Microsoft changed the name of
its fledgling security project to Next-Generation Secure Computing Base. Ste-
fan Bechtold suggests, somewhat tongue-in-cheek, that this name change came
about because “Microsoft was reminded that, after Odysseus and Diomedes had
succeeded in stealing Palladium from the temple of Athene in Troy, the Greeks
were able to capture the city some 3000 years ago.” [Bechtold, 2003] Microsoft
claimed it was due to a legal challenge to the rights to the name, but critics saw
the name change as Microsoft reacting to bad publicity by attempting to di-
minish the overall effect such publicity would have on the underlying Palladium
concepts [Lemos, 2003]. With Microsoft not known to bow to legal challenges on
nomenclature, this explanation is very plausible. It also raises the question as
to whether the “archiving” (ditching) of the NGSCB information from the Mi-
crosoft NGSCB Web site is another attempt at rebranding Microsoft’s security
project in order for Microsoft’s marketers to try again with a clean slate.

3.2.4 “Neutrality”

Asserting neutrality over the potential uses of the Trusted Computing system
is an easy way for providers to escape liability for any applications developed
for it. The companies involved seem to realise the “double-edged sword” nature
of Trusted Computing, that is, that it could be used for illegal and anti-social
applications as well as for applications they would want associated with their
company. Microsoft, in claiming its policy-neutral status, writes:

“The NGSCB architecture offers policy enforcement mechanisms
that can benefit many parties, but enforcement remains in the con-
trol of users. Whether or not they use it in conjunction with rights
management systems, people can use such systems to maintain con-
fidentiality, to control the sharing of their documents, to collaborate

CHAPTER 3. IMPLICATIONS OF TRUSTED COMPUTING 30

online with friends, co-workers or colleagues, or to control sensitive
operations performed on their machines.” [Microsoft, 2003a]

In this way it delegates all responsibility to the applications that take advan-
tage of NGSCB. This is an easy way to evade criticism for any de facto policies
that would arise, such as the use of particular pieces of software that restrict
interoperation due to sofware lock-in (as discussed above). Despite claims of
neutrality, Microsoft is in a uniquely positioned as a member of the Trusted
Computing Group and the maker of the world’s most popular operating system
and software. Microsoft holds at least two types of market power:

– it can use its ability to access NGSCB ∗APIs early to deliver software ready for
NGSCB before competing third parties can (with the possible exception
of other members of the Trusted Computing Group); and

– it can use its existing market share (through current licensing contracts) to
pressure customers to move to NGSCB and the Microsoft applications
associated with it.

Thus the policy enforcement mechanisms that Microsoft has employed will
also suit their purposes to retain their market share in software. For example,
Microsoft Word is currently the industry standard word processor. NGSCB
would encourage the developers of Word to take advantage of its policy en-
forcement mechanisms in order to make sure that only Word applications could
access Word documents, therefore locking consumers into using Word for these
documents and not, as they can today, using rival software such as OpenOf-
fice. In this case, Microsoft could easily hide behind the banner of neutrality,
as they could claim that users chose to use Word, and so such policy enforce-
ment is effectively under their (the users’) control (i.e. if they don’t want such
enforcement, they don’t have to use Word).

Microsoft is not the only company to attempt to distance itself from being
seen to take sides in policy issues; that IBM and other Trusted Computing Group
companies wish to avoid being associated with the potential DRM capabilities
of Trusted Computing [Safford, 2002b] suggests that taking a firm stance on
these issues is seen as detrimental to business. Consumers should be wary lest
the evasion of responsibility at this stage means that the companies involved
will also be able to avoid responsibility if things go wrong. For scientists in any
field to distance themselves from accountability for the results of research by
claiming neutrality is to walk a fine ethical line, and for scientists involved in
large-scale consumer operations this line is even finer.

3.3 Digital Rights Management

One of the most discussed issues is the potential for Trusted Computing’s en-
cryption and attestation abilities to be used for Digital Rights Management
(DRM). DRM, in this context, is the attempt to use computer technology to

CHAPTER 3. IMPLICATIONS OF TRUSTED COMPUTING 31

enforce the property rights which accrue to holders of any form of copyright. For
obvious economic reasons it is currently particularly important to the holders of
large-scale portfolios of copyright in films and music. With previous attempts
at DRM poorly implemented and mostly unsuccessful (see Chapter 2), Trusted
Computing seems to offer a much greater chance of success in DRM, because
of its potential not only to require specific systems to prove that they hold a
licence before showing or copying copyrighted material (something which earlier
copy-protection systems can also do) but also to stop other systems — systems
which the copyright holder has not anticipated in any detail — from bypassing
the protection mechanisms.

Although no company has claimed that DRM is a definite aim for their
Trusted Computing ventures, many have suggested that the low-level encryption
and attestation functions available on the TPM are well suited to DRM purposes
[Anderson, 2002, Anderson, 2003, Schoen, 2003, Stallman, 2002]. Those who
disagree with tarring Trusted Computing and DRM with the same brush argue
one or more of the following points:

– Trusted Computing does not necessarily make DRM easier to employ.

– The combination of Trusted Computing and DRM is not necessarily going to
be implemented.

– The criticisms of Trusted Computing in this context cast an unnecessary
bad light on the potential good applications of DRM [Safford, 2002b,
Anonymous, 2004].

Despite these claims, Digital Rights Management has long been a definite
goal for Microsoft’s NGSCB and very possibly still is. “It’s a funny thing,”
remarked Microsoft Chairman Bill Gates, “We came at this thinking about mu-
sic, but then we realized that e-mail and documents were far more interesting
domains.” [Thurrott, 2002] Digital Rights Management and NGSCB have al-
ways been intertwined, and the Trusted Computing Group’s initiative, which is
not entirely separate from NGSCB, will be at least somewhat affected by any
publicity brought about by the resulting use of DRM with NGSCB. Good inten-
tions or no, Trusted Computing Group members wishing to separate themselves
from DRM issues will find it difficult when the majority of TCG TPMs are in
NGSCB-controlled computers.

What has made public discussion of this problem difficult is not the sep-
aration of DRM and Trusted Computing, but placing the ideals of Trusted
Computing in a realistic context that everyday users will likely find themselves
if the technology is expanded and developed. Those who wish to alert people to
the problems surrounding the technology must take examples that are plausible,
not only technology-wise, but that are also within the realm that the companies
involved have explored previously. We need not look further than Microsoft’s
Janus DRM software [Borland, 2004], software that adds time restrictions to
media files, to realise that Digital Rights Management is a realm that tech-
nology companies are interested in, so any software or hardware that helps to
restrict data usage is likely to be used for that purpose.

CHAPTER 3. IMPLICATIONS OF TRUSTED COMPUTING 32

3.4 Software Lock-In and Competition Restric-

tion

Another major concern about Trusted Computing involves the potential use
of the technology to lock customers in to using a particular piece of software:
in other words, to force them to use it for a substantial period — years or
decades — after it ceases to be the best solution to their problems. Lock-in of
this magnitude is common in the Information Technology world: for example,
many banks still use programs which are expensive to maintain (in the sense of
adding minor essential improvements to keep up with changes in legislation and
other policies) because they are written in languages such as COBOL which
have been obsolete (and hence expensive to hire experts in) for thirty years
[Shapiro and Varian, 1998].

How does Trusted Computing encourage software lock-in? Using the Trusted
Computing cryptography and attestation mechanisms in software not only makes
encrypting important data possible, but could also allow software to restrict
access to competitive products that wish to interoperate with it, such as “unof-
ficial” versions of instant messenger clients [Anderson, 2002, Schoen, 2003]. It
would be difficult for Trusted Computers to employ attestation in the simple
form given in the TCG specifications for this sort of purpose, so each piece of
software would have to govern its own interoperability standings, by, for exam-
ple, issuing certificates from a centralised server tied to the Attestation Identity
Key given to it by the licensee’s computer. A software manufacturer could
use the sealed storage capabilities of Trusted Computing to prevent other ap-
plications from accessing the data kept within, thus locking out interoperative
applications within the one platform [Schoen, 2003]. Whether or not this is an
actual goal of the Trusted Computing initiatives, it is definitely going to be a
side-effect, as access policies for sealed storage would need to protect against
third party applications accessing secret data.

How do proponents of Trusted Computing deal with this problem? Not sur-
prisingly, they don’t. Microsoft’s recent antitrust cases [US Department of Justice, 2004]
have meant that it has maintained a strictly low profile when commenting on
software lock-in issues, and especially on the specific case of NGSCB. IBM’s
David Safford [Safford, 2002a] has countered accusations of Trusted Comput-
ing’s aims for DRM, but has not attempted to address the problems of software
lock-in, or even acknowledged their existence. Such companies could benefit
greatly from lock-in on a software (such as Microsoft) or hardware (such as
IBM) level, and would best serve their own interests by publicly ignoring the
problem.

Most serious thought on countering the software lock-in problem has there-
fore come from disinterested commentators on Trusted Computing, most of
whom are more or les opposed to both software lock-in and Trusted Computing
in general. One of these people, Seth Schoen, despite misgivings about Trusted
Computing as it stands, has suggested a solution to the software lock-in prob-
lem, “Owner Override”.

CHAPTER 3. IMPLICATIONS OF TRUSTED COMPUTING 33

3.5 Making Trusted Computing More Palatable

Several suggestions have been made to make Trusted Computing more appealing
to those who find fault with it. Seth Schoen’s aforementioned Owner Override
approach is the major one, presenting a solution to the problem of the lack
of owner control over the computer. In allowing a physically present user to
override the information about the software state of their computer that would
be sent to a computer requesting an attestation, the user would be able to
send the requesting computer information of his or her choosing, rather than
what is automatically generated by the computer. This would be similar in
functionality to current Web browsers’ capabilities to present themselves to
version-checking Web sites as a different browser, in order to bypass any checking
mechanism restricting use of that Website to a particular browser. Although
this degrades the overall “magic bullet” appearance of Trusted Computing, by
retaining security issues that are present now, Schoen claims it retains some
of the more important parts of the Trusted Computing architecture, namely,
informing the user as to whether the computer’s software environment state
has changed without the user’s knowledge. This allows the computer owner to
interoperate with a remote entity regardless of the client software they use, as
they can submit a modified attestation to the requesting computer, making it
seem as though it is running the required software [Schoen, 2003]. This would
cut down on lock-in issues, but could open up networks to rogue clients intent
on causing damage (much as such networks are open today). Although Owner
Override would improve some parts of Trusted Computing, it would be likely
to have several drawbacks:

– Owner Override might degrade the overall security of the system by making it
more complex, and thus more difficult to control; for example, the sending
of false information to remote entities would not be much use unless the
generation of the information was at least partly automated (because the
information would be complicated enough to be extremely burdensome
for a human to memorise and type), and such automation could lead to
serious security holes;

– Owner Override might instil a false sense of security in users of networked
applications; and

– Owner Override would render most DRM (good or bad) applications ineffec-
tive.

On the whole, Owner Override is a good starting point for discussion about
modifications to Trusted Computing, but it should not be seen as an overall
solution to the issues Trusted Computing raises. And this is doubly so since,
for the reasons of control mentioned above (and others omitted for lack of space)
neither Microsoft nor any other member of the Consortium is likely to ever build
a system incorporating Schoen’s idea.

Kursawe and Stüble [Kursawe and Stüble, 2003] suggest a similar technique,
allowing the owners to not only “substitute” the PCR values, much like Owner

CHAPTER 3. IMPLICATIONS OF TRUSTED COMPUTING 34

Override, but also access and migrate the Storage Root Key and overwrite
and re-generate the Endorsement Key, amongst other things, in certain cir-
cumstances. This brings with it all the drawbacks of vanilla Owner Override:
although the arguments for giving the owner access to the SRK when the user is
moving data from one computer to another (for example, for back-up) are sound,
access to the SRK in other circumstances could be problematic for DRM-based
applications, both the good ones and the bad.

There is nothing one can add to the current Trusted Computing specifica-
tions that would be an adequate compromise for all parties. Giving the owner
access to keys used for encryption purposes would defy Digital Rights Manage-
ment applications. Allowing the owner to change the PCR values would lead
to problems with attestation in trusting reported values, and the potential for
Trusted Computing to leave us no better off than we are now. It seems to me
that the Trusted Computing initiative, while an excellent start in investigating
the realms of securing the computer and network, is not going to be the best an-
swer for many of the parties concerned, particularly typical end-users. Perhaps,
however, the DRM applications are not necessary to the overall improvement
to security that Trusted Computing would offer, and in this light, giving the
user the keys to the system, and thus the ability to decrypt information stored
on the system, would be appropriate in order to keep an even standing in the
realms of interoperation and user control.

Conclusion

In this thesis I have investigated some of the advantages and disadvantages
of Trusted Computing. I have explored both social and technological issues,
including those of trust, rights to privacy, ownership and control, vulnerabili-
ties, uptake, benefits and disadvantages, and potential uses and abuses. I have
discussed some of the problems of definition that plague the project, and that
will continue to cause confusion in both implementation and use unless directly
addressed.

I have established that Trusted Computing, in its current state, will not
be an effective long-term solution to security woes, and could in fact hinder
efforts to stamp out illegal and anti-social activities as well as restrict honest
consumers’ rights to carry out legitimate activities.

Trusted Computing, as a blanket security system, is too restrictive, and yet
if these restrictions were to be lifted (through Owner Override, for example)
it would be largely ineffective except for certain low-level tasks which could
easily be dealt with separately (such as memory protection). However, Trusted
Computing is scheduled to be deployed with upcoming versions of operating
systems, even though many problems, such as backup and restoration, have not
yet been addressed at all, and others have been addressed only superficially and
unsatisfactorily. Trusted Computing is a premature grab for acknowledgement
in the security field which could easily backfire. This is particularly likely if
the issues which have not yet been addressed are abstracted to the software
level, as the issues with Denial of Service attack issues have been. Microsoft has
already encountered problems requiring large-scale reassessment with its plans
for NGSCB, and will need to pay much more attention to its customers to divine
exactly what their security needs are, and to come to a compromise between
these and the limits of the Trusted Computing architecture.

Despite having looked closely at the dialogue on the changes required for
NGSCB to be acceptable to business clients, it is hard to know whether or not
such a compromise will result in NGSCB being taken to pieces to reappear as a
series of smaller-scale endeavours, but the issues raised in this thesis show that
such a move would not be surprising.

The social issues that Trusted Computing is likely to encounter will only
make dealing with the technical issues worse, as public relations material, ed-
ucation, and advertisements will attempt to display Trusted Computing as the
solution to practically all current security problems, to the point where users are

35

CONCLUSION 36

likely to become lax with other important parts of computer security not cov-
ered by Trusted Computing, such as choice and storage of personal passwords.
Modifications likely to be made to Trusted Computing will not necessarily im-
prove the system at all, and even as a compromise may end up creating more
problems than they solve. Overall, Trusted Computing will not, without major
modifications to specifications and implementations, be able to deliver a solution
to the problems of computer and network security without severely encroaching
on a user’s privacy and freedom of choice.

Glossary

Adware Software, usually installed by mistake or stealth on a victim’s com-
puter, that displays unsolicited advertising.

AIK Attestation Identity Key: A key created within the TPM, signed by the
Endorsement Key, that is used for responding to attestation requests and
other general TPM functions with a relative level of anonymity.

API Application Programmer Interface: Application Programmer Interface: A
set of functions provided by one piece of software for the use of another
piece of software, at a level suitable for programmers to use to make an
interface between a new piece of software and an existing piece of software
(typically an operating system).

Application Piece of software suitable for direct use by a user: for example, a
word processing program.

Attestation The process by which a program can digitally sign and acknowl-
edge that a piece of data was created within a secure operating environ-
ment in which the software running is known and can be identified.

ASCII American Standard Code for Information Interchange: A de facto stan-
dard for encoding text characters on a computer. Characters that are en-
coded are all upper- and lower-case Latin alphabet characters, numbers,
and punctuation symbols.

Bandwidth The data transmission rate, i.e. the maximum amount of data
that can be transmitted along a channel.

BIOS Basic Input/Output System: A set of instructions stored in read-only
memory on the computer, that provides the initial sequence of commands
when the computer is switched on.

Boot The process of initialising the computer and operating system.

CRTM Core Root of Trust for Measuring Integrity Metrics: The initial set of
instructions called alongside the BIOS to establish a secure boot process.

37

GLOSSARY 38

DRM Digital Rights Management: A set of mechanisms that attempts to pre-
vent restricted media licensees from deviating from the the owner’s in-
tended use.

EK Endorsement Key: The public key pair that uniquely identifies the com-
puter’s TPM.

File handle A low-level structure within the operating system that identifies
files and facilitates access to them programatically.

Firewall A hardware and/or software buffer between an internal network and
the Internet. It often enforces restrictions on data allowed in or out based
on access policies.

Hash A mathematical formula that renders an arbitrary-length piece of data
to a unique fixed-length piece of data.

Malware Malicious software which is usually installed by accident or stealth.
Examples include data miners, which attempt to capture information
about the user (such as browsing habits, etc.), password retrievers, or
other sorts of discreet monitoring software.

Nexus The software interface for Microsoft’s NGSCB.

NGSCB Next-Generation Secure Computing Base: Microsoft’s TPM-based
Trusted Computing solution. Formerly known as “Palladium”.

Open Standard A specification that allows for any interested party to create
compliant works without paying royalty or suffering discrimination.

Operating System Software that handles the execution of applications, and
performs functions such as load balancing, scheduling, storage allocation,
interfacing between devices and applications, and error handling.

Palladium See NGSCB.

Patch An update to a piece of software that does not require the administrator
to download and/or install the whole application from scratch.

PCR Platform Control Register: A 160-bit storage location for hashes of in-
formation about the security state of the computer.

PRIVEK The private part of the Endorsement Key.

Process table In a multi-tasking environment, a table containing all the infor-
mation needing to be saved for when the CPU performs a context switch
from one process to another.

PUBEK The public part of the Endorsement Key.

GLOSSARY 39

Reverse-engineering The practise of deconstructing or disassembling hard-
ware or software in order to find out how it works. Often this is with the
aim to build a similar project that can interoperate with the original.

RSA Rivest, Shamir, and Adelman’s cryptographic algorithm. See Chapter 2.

Seal The function performed by the TPM to securely write data to an en-
crypted location with the computer in a specific security state. See unseal.

SHA-1 Simple Hashing Algorithm: See hash.

Social Engineering A process by which a malicious entity coerces a victim
into revealing information that they would not otherwise divulge. See
Chapter 1, footnote.

Spyware Malicious software specifically with the intent to spy on a user’s ac-
tivities, often to extract passwords, bank account details, etc.

SRK Storage Root Key: The key used as a basis for the secure storage func-
tionality, to encrypt and decrypt under the seal and unseal directives.

TCG Trusted Computing Group: A group of companies developing the Trusted
Computing and TPM specifications. Formerly known as the TCPA.

TCP/IP Transmission Control Protocol/Internet Protocol: The communica-
tions protocols upon which the Internet is based.

TCPA Trusted Computing Platform Alliance: See TCG.

Telnet A protocol for remote computing across TCP/IP, that allows the client
computer to establish a remote terminal on a server in order to carry out
remote tasks on that server.

Timing analysis A process by which security mechanisms are attacked by
monitoring the timing between keystrokes sent over encrypted protocols
in order to determine some information about them (such as the length of
the password, etc.).

TPM Trusted Platform Module: The chip soldered onto the motherboard that
provides trusted computing functionality.

Unseal The process by which a TPM authenticates and decrypts securely
stored information depending on the security state of the computer. See
seal.

Unicode A 16-bit character set which aims to replace the 128 character ASCII
standard in order to encompass the wide variety of characters available in
different languages. There are 65536 different Unicode characters avail-
able.

GLOSSARY 40

User A computer user, that is, any person who sits down at a computer or a
terminal.

van Eck phreaking A method of eavesdropping on a computer user from a
distance by way of using specific hardware to pick up and interpret elec-
tromagnetic fields output by computer hardware, particularly monitors.
Signals received are pieced back together by the hardware so that the
image is retrieved and can be displayed to the attackers.

Virus A piece of malware that is inadvertently executed by a user (usually
through social engineering manipulation of the user) that replicates itself
in order to infect others and carries out some form of vandalism on the
host computer.

Vernam one-time pad The traditional one-time pad as used in World War I,
which provides a block of completely random data as long as the message
to be encrypted. These “pads” must be used only once (as each successive
use makes it easier for the encryption to be broken), and they must be
exchanged via a secure channel (so that the originator and target both
have copies). These days, public key cryptography (see Chapter 1) is used
to transfer the pads.

WinHEC Windows Hardware Engineering Conference: A conference held an-
nually by Microsoft with workshops and talks on Windows hardware en-
gineering.

Worm A self-replicating piece of malware, similar to a virus, that is usually
focussed solely on propagation rather than vandalism, although the latter
is often a side-product of the former as network bandwidth is choked up
with the worm’s self-propagation attempts.

Bibliography

[Anderson, 2002] Anderson, R. (2002). Cryptography and Competition Policy
– Issues with ‘Trusted Computing’. Technical report, Cambridge University.

[Anderson, 2003] Anderson, R. (2003). ‘Trusted Computing’ Frequently Asked
Questions: – TC/TCG/LaGrande/NGSCB/Longhorn/Palladium/TCPA.
http://www.cl.cam.ac.uk/˜rja14/tcpa-faq.html.

[Anonymous, 2004] Anonymous (2004). Interesting Uses of Trusted Computing.
http://invisiblog.com/1c801df4aee49232/article/0df117d5d9b32aea8bc23194ecc270ec.

[Bechtold, 2003] Bechtold, S. (2003). The Present and Future of Digital Rights
Management – Musings on Emerging Legal Problems. Digital Rights Man-
agement, LNCS 2770:597–654.

[Bellovin, 1989] Bellovin, S. M. (1989). Security Problems in the
TCP/IP Protocol Suite. Computer Communications Review, (2):32–48.
http://www.research.att.com/s̃mb/papers/ipext.pdf.

[Borland, 2004] Borland, J. (2004). Microsoft’s iPod killer? C—Net News.
http://news.com.com/2100-1027-5183692.html.

[Boutin, 2002] Boutin, P. (2002). Palladium: Safe or Security Flaw? Wired
News. http://www.wired.com/news/antitrust/0,1551,53805,00.htm.

[Coursey, 2002] Coursey, D. (2002). Why we can’t
trust Microsoft’s ‘trustworthy’ OS. ZDNet.
http://www.zdnet.com.au/newstech/os/story/0,2000048630,20266389,00.htm.

[Delio, 2003] Delio, M. (2003). Are You a Good or a Bad Worm? Wired News.
http://www.wired.com/news/infostructure/0,1377,60081,00.html.

[Diffie and Hellman, 1976] Diffie, W. and Hellman, M. E. (1976). New Di-
rections in Cryptography. IEEE Transactions on Information Theory, IT-
22(6):644–654. http://citeseer.ist.psu.edu/diffie76new.html.

[Ferguson and Schneier, 2003] Ferguson, N. and Schneier, B. (2003). Practical
Cryptography. Wiley Publishing, Inc., Indianopolis, Indiana.

41

BIBLIOGRAPHY 42

[Fisher, 2004] Fisher, K. C. (2004). Apple’s FairPlay DRM cracked. Ars Tech-
nica. http://arstechnica.com/news/posts/1081206124.html.

[Foucault, 1975] Foucault, M. (1975). Discipline and Punish. Random House.

[Grossman and Webb, 1991] Grossman, J. and Webb, K. (1991). Local food
and nutrition policy. Australian Journal of Public Health, 4:271–277.

[Halderman, 2003] Halderman, J. A. (2003). Analysis of the MediaMax CD3
Copy-Prevention System. Technical Report TR-679-03, Princeton University.
http://www.cs.princeton.edu/ jhalderm/cd3/.

[Hewlett-Packard, 2003] Hewlett-Packard (2003). Trusted Computing Plat-
forms: TCPA Technology in Context. Prentice Hall PTR.

[Information Sciences Institute, 1981] Information Sciences Institute (1981).
Internet Protocol, DARPA Internet Program, Protocol Specification. Techni-
cal Report RFC 791, University of Southern California, 4676 Admiralty Way,
Marina del Rey, California 90291. http://www.faqs.org/rfcs/rfc791.html.

[Krill, 2003] Krill, P. (2003). Microsoft readies kit for security initiative. In-
foWorld. http://www.infoworld.com/article/03/06/19/HNngscbtech 1.html.

[Kursawe and Stüble, 2003] Kursawe, K. and Stüble, C. (2003). Im-
proving End-user Security and Trustworthiness of TCG-Platforms.
Technical report, Saarland University. http://www-krypt.cs.uni-
sb.de/download/papers/KurStu2003.pdf.

[Laboratories, 2003] Laboratories, R. (2003). Cryptographic Chal-
lenges: The New RSA Factoring Challenge: RSA-576 is factored!
http://www.rsasecurity.com/rsalabs/node.asp?id=2096.

[Latour and Woolgar, 1986] Latour, B. and Woolgar, S. (1986). Laboratory Life.
Princeton Univ. Press.

[Lemos, 2003] Lemos, R. (2003). What’s in a name? Not Palladium. C—Net
News. http://news.com.com/2100-1001-982127.html.

[Lord, 2004] Lord, T. (2004). Microsoft Drops Next-Generation Security
Project. http://slashdot.org/articles/04/05/05/1520224.shtml.

[Manjoo, 2002] Manjoo, F. (2002). Can we
trust Microsoft Palladium? Salon.com.
http://www.salon.com/tech/feature/2002/07/11/palladium/index.html.

[McCullagh, 2000] McCullagh, D. (2000). Teen Hacking Idol Hits Big Apple.
Wired News. http://www.wired.com/news/culture/0,1284,37650,00.html.

[Microsoft, 2003a] Microsoft (2003a). Microsoft NGSCB Technical FAQ.
http://www.microsoft.com/technet/security/news/ngscb.mspx.

BIBLIOGRAPHY 43

[Microsoft, 2003b] Microsoft (2003b). Next Generation Secure Computing Base.
http://www.microsoft.com/resources/ngscb/default.mspx.

[Microsoft, 2003c] Microsoft (2003c). Next-Generation
Secure Computing Base Product Information.
http://www.microsoft.com/resources/ngscb/productinfo.mspx.

[Naraine, 2004] Naraine, R. (2004). Microsoft: Full Steam Ahead
for Palladium. InternetNews.com. http://www.internetnews.com/ent-
news/article.php/3350021.

[Patrizio, 2002] Patrizio, A. (2002). Codebusters Crack Encryption Key.
http://www.wired.com/news/technology/0,1282,55584,00.html.

[Raymond, 1996] Raymond, E. S. (1996). The New Hacker’s Dictionary. MIT
Press, 3 edition.

[Rivest et al., 1977] Rivest, R. L., Shamir, A., and Adelman, L. M. (1977).
A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.
Technical Report MIT/LCS/TM-82.

[Rooney, 2004] Rooney, P. (2004). Microsoft Shelves
NGSCB Project as NX Moves to Center Stage. CRN.
http://www.crn.com/sections/BreakingNews/dailyarchives.asp?ArticleID=49936.

[Safford, 2002a] Safford, D. (2002a). Clarifying Misinfor-
mation on TCPA. Technical report, IBM Research.
http://www.research.ibm.com/gsal/tcpa/tcpa rebuttal.pdf.

[Safford, 2002b] Safford, D. (2002b). The Need for TCPA. Technical report,
IBM Research.

[Schoen, 2003] Schoen, S. (2003). Trusted Computing: Promise
and Risk. Technical report, Electronic Frontiers Foundation.
http://www.eff.org/Infra/trusted computing/20031001 tc.php.

[Schuba, 2000] Schuba, C. L. (2000). Analysis of a Denial of Ser-
vice Attack on TCP. Technical report, Purdue University.
http://ftp.cerias.purdue.edu/pub/papers/diego-zamboni/schuba-krsul-
kuhn-spaf-sundaram-zamboni-synkill.pdf.

[Sewell, 2002] Sewell, G. (2002). Peering Behind the Mask of
Trust: Between Trust and Control in Contemporary Or-
ganisations. Technical report, University of Melbourne.
http://www.management.unimelb.edu.au/research/wph5.pdf.

[Shapiro and Varian, 1998] Shapiro, C. and Varian, H. R. (1998). Information
Rules. Harvard Business School Press.

[Stallman, 2002] Stallman, R. M. (2002). Free Software, Free Society: The
Selected Essays of Richard M. Stallman. GNU Press.

BIBLIOGRAPHY 44

[Stevens, 1994] Stevens, W. R. (1994). TCP/IP Illustrated: The Protocols, vol-
ume 1 of Addison-Wesley Professional Computing Series. Addison Wesley.

[Thurrott, 2002] Thurrott, P. (2002). Microsoft’s Secret Plan
to Secure the PC. Windows Network and .Net Magazine.
http://www.winnetmag.com/Article/ArticleID/25681/25681.html.

[Trusted Computing Group, 2003] Trusted Computing Group (2003). TCG
TPM Specification v1.2: Design Principles. Technical report.

[Trusted Computing Group, 2004] Trusted Computing Group
(2004). Current members. Technical report.
https://www.trustedcomputinggroup.org/about/members/.

[US Department of Justice, 2004] US Department of Justice (2004). An-
titrust Case Filings: United States vs. Microsoft. Technical report.
http://www.usdoj.gov/atr/cases/ms index.htm.

[Ware, 1970] Ware, W. (1970). Security Controls for Computer Systems (U):
Report of Defense Science Board Task Force on Computer Security. Technical
report, The Rand Corporation, Santa Monica, CA.

[Webb, 2001] Webb, M. (2001). Windows Tips: Disable Balloon Tips. TechTV.
http://www.techtv.com/screensavers/windowstips/story/0,24330,3362976,00.html.

[Whitten and Tygar, 1998] Whitten, A. and Tygar, J. D. (1998). Usability of
security: A case study. Technical Report CMU-CS-98-155, Carnegie Mellon
University. http://reports-archive.adm.cs.cmu.edu/anon/1998/CMU-CS-98-
155.pdf.

